As per the above equation, for a
speed of 40 kmph the display will read 900 (or 9 seconds), and for a speed of 60 kmph the display will read 600 (or 6
seconds). Note that the LSB of the display equals 0.01 second and each succeeding digit is ten times the preceding digit. You can similarly calculate the other readings (or time).
Circuit description
Fig. 2 shows the circuit of the speed checker. It has been esigned assuming that the maximum permissible speed for highways is either 40 kmph or 60 kmph as per the traffic rule.
The circuit is built around five NE555 timer ICs (IC1 through IC5), four CD4026 counter ICs (IC6 through IC9) and four 7-segment displays (DIS1 through DIS4). IC1 through IC3 function as monostables, with IC1 serving as count-start mono, IC2 as count-stop mono and IC3 as speed-limit detector
mono, controlled by IC1 and IC2 outputs. Bistable set-reset IC4 is also controlled
by the outputs of IC1 and IC2 and it (IC4), in turn, controls switching on/off of the 100Hz (period = 0.01 second) astable timer IC5.
The time period of timer NE555 (IC1) count-start monostable multivibrator is adjusted using preset VR1 or VR2 and capacitor C1. For 40kmph limit the time period is set for 9 seconds using preset VR1, while for 60kmph limit the time period is set for 6 seconds using preset VR2. Slide switch S1 is used to select the time period as per the speed limit (40 kmph and 60 kmph, respectively). The junction of LDR1 and resistor R1 is coupled to pin 2 of IC1.
Normally, light from the laser keeps falling on the LDR sensor continuously and thus the LDR offers a low resistance and pin 2 of IC1 is high. Whenever light falling on the LDR is interrupted by any vehicle, the LDR resistance goes high and hence pin 2 of IC1 goes low to trigger the onostable.
As a result, output pin 3 goes high for the preset period (9 or 6 seconds) and LED1 glows to indicate it. Reset pin 4 is controlled by the output of NAND generator IC5. IC5 can also be reset via diode D2 at power-on as well as when reset switch S2 is pressed. IC5 is configured as an astable multivibrator whose time period is decided by preset VR3, resistor R12 and capacitor C10. Using preset VR1, the frequency of the astable multivibrator is set as 100 Hz. The output of IC5 is fed to clock pin 1 of decade counter/7- segment decoder IC6 CD4026. gate N3 at power-on or whenever reset switch S2 is pushed. For IC2, the monostable is triggered in the same way as IC1 when the vehicle intersects the laser beam incident on LDR2 to generate a small pulse for stopping the count and for use in the speed detection. LED2 glows for the duration for which pin 3 of IC2 is high.
The outputs of IC1 and IC2 are fed to input pins 2 and 1 of NAND gate N1, respectively. When the outputs of IC1 and IC2 go high simultaneously (meaning that the vehicle has crossed
the preset speed limit), output pin 3 of gate N1 goes low to trigger monostable timer IC3. The output of IC3 is used for driving piezobuzzer PZ1, which alerts the operator of speed-limit violation. Resistor R9 and capacitor C5 decide the time period for which the piezobuzzer
sounds. The output of IC1 triggers the bistable (IC4) through gate N2 at the leading edge of the count-start pulse. When pin 2 of IC4 goes low, the high output at its pin 3 enables astable clock
generator IC5. Since the count-stop pulse output of IC2 is connected to pin 6 of IC4 via diode D1, it resets clock IC CD4026 is a 5-stage Johnson decade counter and an output decoder that converts the Johnson code into a 7-segment decoded output for driving DIS1 display. The ounter advances by one count at the positive clock signal transition. The carry-out (Cout) signal from CD4026 provides one clock after every ten clock inputs to clock the succeeding decade counter in a multidecade counting chain. This is achieved by connecting pin 5 of each CD4026 to pin 1 of the next CD4026.
A high reset signal clears the deFig. 3: Power supply Fig. 4: Actual-size, single-side PCB layout for the speed checker Fig. 5: Component layout for the PCB Construction 62
cade counter to its zero count. Pressing switch S2 provides a reset signal to pin 15 of all CD4026 ICs and also IC1 and IC4. Capacitor C12 and resistor R14 generate the power-on-reset signal.
The seven decoded outputs ‘a’ through ‘g’ of CD4026s illuminate the proper segment of the 7-segment displays (DIS1 through DIS4) used for representing the decimal digits ‘0’ through ‘9.’ Resistors R16 through R19 limit the current across DIS1 through DIS4, respectively.
Fig. 3 shows the circuit of the power supply. The AC mains is stepped down by transforme X1 to deliver the secondary output of 15 volts, 500 mA. The transformer output is rectified by
a bridge rectifier comprising diodes D3 through D6, filtered by capacitor C14 and regulated by IC11 to provide regulated 12V supply. Capacitor C15 bypasses any ripple in the regulated
output. Switch S3 is used as the ‘on’/ ‘off’ switch. In mobile application of the circuit, where mains 230V AC is not available, it is advisable to use an external 12V battery. For activating the lasers used in conjunction with LDR1 and
LDR2, separate batteries may be used.
Construction and working
Assemble the circuit on a PCB. An actual-
size, single-side PCB layout for the
speed checker is shown in Fig. 4 and its
component layout in Fig. 5.
Before operation, using a multimeter
check whether the power supply
output is correct. If yes, apply power
supply to the circuit by flipping switch
S3 to ‘on.’ In the circuit, use long wires
for connecting the two LDRs, so that
you can take them out of the PCB and
install on one side of the highway,
100 metres apart. Install the two laser
transmitters (such as laser torches) on
the other side of the highway exactly
opposite to the LDRs such that laser
light falls directly on the LDRs. Reset
the circuit by pressing switch S2, so the
display shows ‘0000.’ Using switch S1,
select the speed limit (say, 60 kmph) for
the highway. When any vehicle crosses
the first laser light, LDR1 will trigger
IC1. The output of IC1 goes high for
the time set to cross 100 metres with
the selected speed (60 kmph) and LED1
glows during for period. When the
vehicle crosses the second laser light,
the output of IC2 goes high and LED2
glows for this period.
Piezobuzzer PZ1 sounds an alarm if
the vehicle crosses the distance between
the laser set-ups at more than the selected
speed (lesser period than preset
period). The counter starts counting
when the first laser beam is intercepted
and stops when the second laser beam
is intercepted. The time taken by the
vehicle to cross both the laser beams
is displayed on the 7-segment display.
For 60kmph speed setting, with timer
frequency set at 100 Hz, if the display
count is less than ‘600,’ it means that the
vehicle has crossed the speed limit (and
simultaneously the buzzer sounds). Reset
the circuit for monitoring the speed
of the next vehicle.
Note. This speed checker can
check the speed of only one vehicle at
a time.
Fig. 2 shows the circuit of the speed checker. It has been esigned assuming that the maximum permissible speed for highways is either 40 kmph or 60 kmph as per the traffic rule.
The circuit is built around five NE555 timer ICs (IC1 through IC5), four CD4026 counter ICs (IC6 through IC9) and four 7-segment displays (DIS1 through DIS4). IC1 through IC3 function as monostables, with IC1 serving as count-start mono, IC2 as count-stop mono and IC3 as speed-limit detector
mono, controlled by IC1 and IC2 outputs. Bistable set-reset IC4 is also controlled
by the outputs of IC1 and IC2 and it (IC4), in turn, controls switching on/off of the 100Hz (period = 0.01 second) astable timer IC5.
The time period of timer NE555 (IC1) count-start monostable multivibrator is adjusted using preset VR1 or VR2 and capacitor C1. For 40kmph limit the time period is set for 9 seconds using preset VR1, while for 60kmph limit the time period is set for 6 seconds using preset VR2. Slide switch S1 is used to select the time period as per the speed limit (40 kmph and 60 kmph, respectively). The junction of LDR1 and resistor R1 is coupled to pin 2 of IC1.
Normally, light from the laser keeps falling on the LDR sensor continuously and thus the LDR offers a low resistance and pin 2 of IC1 is high. Whenever light falling on the LDR is interrupted by any vehicle, the LDR resistance goes high and hence pin 2 of IC1 goes low to trigger the onostable.
As a result, output pin 3 goes high for the preset period (9 or 6 seconds) and LED1 glows to indicate it. Reset pin 4 is controlled by the output of NAND generator IC5. IC5 can also be reset via diode D2 at power-on as well as when reset switch S2 is pressed. IC5 is configured as an astable multivibrator whose time period is decided by preset VR3, resistor R12 and capacitor C10. Using preset VR1, the frequency of the astable multivibrator is set as 100 Hz. The output of IC5 is fed to clock pin 1 of decade counter/7- segment decoder IC6 CD4026. gate N3 at power-on or whenever reset switch S2 is pushed. For IC2, the monostable is triggered in the same way as IC1 when the vehicle intersects the laser beam incident on LDR2 to generate a small pulse for stopping the count and for use in the speed detection. LED2 glows for the duration for which pin 3 of IC2 is high.
The outputs of IC1 and IC2 are fed to input pins 2 and 1 of NAND gate N1, respectively. When the outputs of IC1 and IC2 go high simultaneously (meaning that the vehicle has crossed
the preset speed limit), output pin 3 of gate N1 goes low to trigger monostable timer IC3. The output of IC3 is used for driving piezobuzzer PZ1, which alerts the operator of speed-limit violation. Resistor R9 and capacitor C5 decide the time period for which the piezobuzzer
sounds. The output of IC1 triggers the bistable (IC4) through gate N2 at the leading edge of the count-start pulse. When pin 2 of IC4 goes low, the high output at its pin 3 enables astable clock
generator IC5. Since the count-stop pulse output of IC2 is connected to pin 6 of IC4 via diode D1, it resets clock IC CD4026 is a 5-stage Johnson decade counter and an output decoder that converts the Johnson code into a 7-segment decoded output for driving DIS1 display. The ounter advances by one count at the positive clock signal transition. The carry-out (Cout) signal from CD4026 provides one clock after every ten clock inputs to clock the succeeding decade counter in a multidecade counting chain. This is achieved by connecting pin 5 of each CD4026 to pin 1 of the next CD4026.
A high reset signal clears the deFig. 3: Power supply Fig. 4: Actual-size, single-side PCB layout for the speed checker Fig. 5: Component layout for the PCB Construction 62
cade counter to its zero count. Pressing switch S2 provides a reset signal to pin 15 of all CD4026 ICs and also IC1 and IC4. Capacitor C12 and resistor R14 generate the power-on-reset signal.
The seven decoded outputs ‘a’ through ‘g’ of CD4026s illuminate the proper segment of the 7-segment displays (DIS1 through DIS4) used for representing the decimal digits ‘0’ through ‘9.’ Resistors R16 through R19 limit the current across DIS1 through DIS4, respectively.
Fig. 3 shows the circuit of the power supply. The AC mains is stepped down by transforme X1 to deliver the secondary output of 15 volts, 500 mA. The transformer output is rectified by
a bridge rectifier comprising diodes D3 through D6, filtered by capacitor C14 and regulated by IC11 to provide regulated 12V supply. Capacitor C15 bypasses any ripple in the regulated
output. Switch S3 is used as the ‘on’/ ‘off’ switch. In mobile application of the circuit, where mains 230V AC is not available, it is advisable to use an external 12V battery. For activating the lasers used in conjunction with LDR1 and
LDR2, separate batteries may be used.
Construction and working
Assemble the circuit on a PCB. An actual-
size, single-side PCB layout for the
speed checker is shown in Fig. 4 and its
component layout in Fig. 5.
Before operation, using a multimeter
check whether the power supply
output is correct. If yes, apply power
supply to the circuit by flipping switch
S3 to ‘on.’ In the circuit, use long wires
for connecting the two LDRs, so that
you can take them out of the PCB and
install on one side of the highway,
100 metres apart. Install the two laser
transmitters (such as laser torches) on
the other side of the highway exactly
opposite to the LDRs such that laser
light falls directly on the LDRs. Reset
the circuit by pressing switch S2, so the
display shows ‘0000.’ Using switch S1,
select the speed limit (say, 60 kmph) for
the highway. When any vehicle crosses
the first laser light, LDR1 will trigger
IC1. The output of IC1 goes high for
the time set to cross 100 metres with
the selected speed (60 kmph) and LED1
glows during for period. When the
vehicle crosses the second laser light,
the output of IC2 goes high and LED2
glows for this period.
Piezobuzzer PZ1 sounds an alarm if
the vehicle crosses the distance between
the laser set-ups at more than the selected
speed (lesser period than preset
period). The counter starts counting
when the first laser beam is intercepted
and stops when the second laser beam
is intercepted. The time taken by the
vehicle to cross both the laser beams
is displayed on the 7-segment display.
For 60kmph speed setting, with timer
frequency set at 100 Hz, if the display
count is less than ‘600,’ it means that the
vehicle has crossed the speed limit (and
simultaneously the buzzer sounds). Reset
the circuit for monitoring the speed
of the next vehicle.
Note. This speed checker can
check the speed of only one vehicle at
a time.
Wonderful blog & good post.Its really helpful for me, awaiting for more new post. Keep Blogging!
ReplyDeleteBE ECE Projects
please need a complete report
ReplyDeleteplease tell me how it will work for two or more vehicle?
ReplyDelete